DOMAINS   > >   Materials Science   > >   2025 - Vol. 55

EUGENIA TANASĂ


Abstract

One extremely promising method for producing hydrogen sustainably and storing energy is the photoelectrochemical (PEC) splitting of water with solar energy. Hematite is a good photoanode material for water splitting because of its advantageous qualities, according to recent study in this area: it is an n-type semiconductor, possesses a band gap appropriate for visible light absorption, exhibits high chemical stability, and is abundantly available on Earth. This review presents various strategies for modifying hematite to enhance its performance. These modifications include element doping, nanostructure design and fabrication, co-catalyst integration, heterostructure formation and the interdependence between the structure and performance of hematite.

Keywords

solar energy, hematite, photoanoes

Year

2025

Issue

55 (2)

Pages

93-99

Domains

MATERIALS SCIENCE

Full Paper

XIANWU JING, XIAOJIN ZHOU, TENG GONG, TAO WANG, YANG WANG, GUOQING LIU, KAIJUN WANG


Abstract

This research employed molecular dynamics simulations to explore the distribution of sodium dodecyl sulfate (SDS) at the n-hexane/water interface. Once the SDS concentration surpasses the critical micelle concentration(cmc), a large portion of SDS migrates to the n-hexane/water interface, establishing a thin layer where sulfonic acid groups are oriented towards the water phase and carbon-hydrogen chains are directed towards n-hexane, a small amount of SDS forms spherical micelle with sulfonic acid groups facing the water phase, while carbon-hydrogen chains aggregate in the interior of these spherical structures. The sulfonic acid group of SDS forms multiple h-bonds with water, shows strong interaction energy; while the carbon hydrogen chain itself has only weak van der Waals interactions with surrounding molecules. The thickness of SDS- layer at the n-hexane/water interface is about 2.06 nm, with a maximum number density of about 0.25 per nm3, and average area occupied by a single SDS- is about 0.21 nm2. According to radial distribution function (RDF) result, due to the attractive effect of positive and negative charges, the first coordination layer of Na+ ions and oxygen atoms on sulfonic acid groups is about 0.21 nm. This study investigated the distribution of SDS at n-hexane/water interface, vividly demonstrating the mechanism by which SDS reduces the interfacial tension between oil and water, and providing guidance for oilfield development.

Keywords

N-hexane/water interface; Molecular dynamic simulation; Sodium dodecyl sulfate; Weak interaction analysis

Year

2025

Issue

55 (2)

Pages

100-106

Domains

MATERIALS SCIENCE

Full Paper